Abstract
The effects of reduced CO2 assimilation capacity on the leaf pigment composition and the dissipation of light energy were studied using transgenic tobacco (Nicotiana tabacum L. cv. W38). Two plant types were used: anti-SSu plants with reduced amounts of Rubisco and anti-GAPDH plants with reduced activity of chloroplast glycer-aldehyde 3-phosphate dehydrogenase. A moderate reduction in the photosynthetic capacity increased the de-epoxidation state of the xanthophyll-cycle pigments. In contrast, there was no large effect on the leaf pigment composition and the ratio of the xanthophyll cycle pigments to chlorophyll, and total carotenoids increased only in the most severe transgenic plants. The light induction of photosynthesis, fluorescence quenching and de-epoxida ion of the xanthophyll cycle pigments were also followed in wild-type and anti-SSu plants. Anti-SSu plants maintained high nonphotochemical quenching and increased xanthophyll de-epoxidation in the light but the reduction state of QA remained high. For both wild-type and anti-SSu plants, the electron transport rate estimated from chlorophyll a fluorescence appeared to be much higher than that required to support the observed rate of CO2 assimilation and photorespiration during the early phase of photosynthetic induction. However, the two estimates converged with the onset of steady-state photosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.