Abstract
To dissect the mechanism by which carotenoid hydroxylases catalyze xanthophyll formation, we have cloned two pepper cDNAs encoding β-cryptoxanthin and zeaxanthin biosynthetic enzymes. Using an in vitro system, we find that both enzymes are ferredoxin dependent and that their activity is strongly inhibited by iron chelators such as o-phenanthroline or 8-hydroxyquinoline. This suggests the transfer of a reducing equivalent from NADPH to the hydroxylase via ferredoxin and the involvement of an iron activated oxygen insertion process. Based on sequence analysis, the putative histidine clusters involved in the iron coordination were identified and their roles evaluated. Following site-directed mutagenesis of the identified histidine residues hydroxylase activity was totally inactivated. Collectively, our data indicate that carotenoid hydroxylases belong to a new class of diiron proteins structurally related to membrane fatty acid desaturases. Mechanistically, both types of enzymes exploit iron activated oxygen to break the C–H bond with concomitant formation of double bond or oxygen insertion. We propose that the same mechanism operates for β-carotene ketolase and probably for other carotenoid oxygenases as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.