Abstract

PdeR, a response regulator of the two-component system (TCS) with the cognate histidine kinase PdeK, has been shown to be an active phosphodiesterase (PDE) for intracellular cyclic dimeric guanosine monophosphate (c-di-GMP) turnover and positively regulates the virulence of Xanthomonas oryzae pv. oryzae, the causal pathogen of bacterial blight of rice. To further reveal the key components and pathways involved in the PdeR-mediated c-di-GMP regulation of virulence, 16 PdeR-interacting proteins were identified, using the yeast two-hybrid (Y2H) assay. Among them, PXO_04421 (named as TriP, a putative transcriptional regulator interacting with PdeR) was verified via Y2H and glutathione-S-transferase pull-down assays, and its regulatory functions in bacterial virulence and exopolysaccharide (EPS) production were assessed by biochemical and genetic analysis. The REC domain of TriP specifically interacted with the EAL domain of PdeR. TriP promoted the PDE activity of PdeR to degrade c-di-GMP in the presence of PdeK. In-frame deletion in triP abolished the polar localization of PdeR in the cell. Notably, the ∆triP mutant showed significantly reduced virulence on susceptible rice leaves and impaired EPS production compared with wild type, whereas the double mutant ∆triP∆pdeR, like ∆pdeR, caused shorter lesion lengths and produced less EPS than ∆triP. In addition, cross-complementation showed in trans expression of pdeR in ∆triP restored its EPS production to near wild-type levels but not vice versa. Taken together, our results suggest that TriP is a novel regulator that is epistatic to PdeR in positively regulating virulence expression in X. oryzae pv. oryzae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call