Abstract

ObjectiveAcetaminophen (APAP) is one of the world's popular and safe painkillers, and overdose can cause severe liver damage and even acute liver failure. The effect and mechanism of the xanthohumol on acetaminophen-induced hepatotoxicity remains unclear. MethodsThe hepatoprotective effects of xanthohumol were studied using APAP-induced HepG2 cells and acute liver injury of mouse, seperately. ResultsIn vitro, xanthohumol inhibited H2O2- and acetaminophen-induced cytotoxicity and oxidative stress. Xanthohumol up-regulated the expression of Nrf2. Further mechanistic studies showed that xanthohumol triggered Nrf2 activation via the AMPK/Akt/GSK3β pathway to exert a cytoprotective effect. In vivo, xanthohumol significantly ameliorated acetaminophen-induced mortality, the elevation of ALT and AST, GSH depletion, MDA formation and histopathological changes. Xanthohumol effectively suppressed the phosphorylation and mitochondrial translocation of JNK, mitochondrial translocation of Bax, the activation o cytochrome c, AIF secretion and Caspase-3. In vivo, xanthohumol increased Nrf2 nuclear transcription and AMPK, Akt and GSK3β phosphorylation in vivo. In addition, whether xanthohumol protected against acetaminophen-induced liver injury in Nrf2 knockout mice has not been illustated. ConclusionThus, xanthohumol exerted a hepatoprotective effect by inhibiting oxidative stress and mitochondrial dysfunction through the AMPK/Akt/GSK3β/Nrf2 antioxidant pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call