Abstract

In addition to its pivotal role in purine metabolism, xanthine oxidoreductase (XOR) is one of the key enzymes involved in superoxide radical generation. Oxidative stress has been implicated in the etiology of colorectal cancer, but the contribution of XOR remains unclear. Here we investigated the role of XOR in colitis-associated colorectal cancer (CAC) and the underlying mechanisms. Using clinical samples, we demonstrated that XOR up-regulation was an early event in colonic carcinogenesis. Pharmacological inhibition of XOR effectively delayed the progression of CAC. Moreover, XOR activity positively correlated with tumor necrosis factor-alpha (TNFα) protein levels. Mechanistically, TNFα may activate XOR transcription via activator protein-1 and, thus, promote endogenous hydrogen peroxide generation, resulting in oxidative DNA damage in colon cancer cells. On the other hand, XOR may regulate the TNFα mRNA transcripts by mediating LPS-induced macrophage M1 polarization. Collectively, XOR promotes tumor development by programming the tumor microenvironment and stimulates CAC progression via DNA damage-induced genetic instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.