Abstract

Background Oxidative stress is implicated in cardiac remodeling and failure. We tested whether xanthine oxidase (XO) inhibition could decrease myocardial oxidative stress and attenuate left ventricular (LV) remodeling and dysfunction in the TO-2 hamster model of dilated cardiomyopathy. Methods and Results TO-2 hamsters were randomized to treatment with the XO inhibitor, allopurinol, or vehicle from 6 to 12 weeks of age. F1B hamsters served as controls. TO-2 hamsters treated with vehicle progressively developed severe LV systolic dysfunction and dilation between 6 and 12 weeks. Marked cardiac fibrosis was apparent in these hamsters at 12 weeks in comparison with F1B controls. The ratio of reduced to oxidized glutathione (GSH/GSSG) was decreased and malondialdehyde levels were increased in the hearts of vehicle-treated TO-2 hamsters. Treatment with allopurinol from 6 to 12 weeks attenuated LV dysfunction and dilation as well as myocardial fibrosis and the upregulation of a fetal-type cardiac gene. Allopurinol also inhibited both the decrease in GSH/GSSG ratio and the increase in malondialdehyde levels in the heart. Conclusions These results indicate that chronic XO inhibition with allopurinol attenuates LV remodeling and dysfunction as well as myocardial oxidative stress in this model of heart failure. Allopurinol may prove beneficial for the treatment of heart failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call