Abstract

It is currently believed that reactive oxygen species are produced in the heart post-ischemia reperfusion, causing pathophysiological disorders. Studies reported in the literature dealing with this subject have generated contradictory findings. The aim of this study was to assess the catalytic activity of the superoxide anion-producing enzyme xanthine oxidase, and the level of lipid peroxides in isolated rat heart muscle undergoing ischemia of varying duration and severity followed by reperfusion. Three levels of ischemia were investigated: total, and partial at either 0.10 or 0.35 ml/min (residual flow rate). Three different periods of ischemia were examined in each case. After each period of ischemia, followed by 10 min of reperfusion, the heart was frozen in liquid nitrogen. Xanthine oxidase activity and lipid peroxide levels were assayed in the cardiac homogenate and in the centrifuged supernatant, respectively. In the different experimental protocols studied here, both cardiac xanthine oxidase and lipid peroxide levels remained statistically unchanged compared to the continuously perfused control hearts. Moreover, in a recent study (Boucher et al., FEBS Lett. 203, 261-264, 1992), we were unable to detect reactive oxygen species in perfusate upon reperfusion of ischemic rat hearts. These results suggest that changes in xanthine oxidase activity during myocardial ischemia-reperfusion, and lipid peroxidation, as assessed by measuring thiobarbituric acid reactants and lipid hydroperoxides, are not predominant phenomena in ischemia-reperfusion-induced injury, at least in the experimental model used in this study.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.