Abstract
Antiaromatic molecules have recently received attention because of their intrinsic properties, such as high reactivity and their narrow HOMO-LUMO gaps. Stacking of antiaromatic molecules has been predicted to induce three-dimensional aromaticity via frontier orbital interactions. Here, we report a covalently linked π-π stacked rosarin dimer that has been examined experimentally by steady-state absorption and transient absorption measurements and theoretically by quantum chemical calculations, including time-dependent density functional theory, anisotropy of induced current density, and nucleus-independent chemical shift calculations. Relative to the corresponding monomer, the dimer exhibits diminished antiaromaticity upon lowering the temperature to 77 K, a finding ascribed to intramolecular interactions between the macrocyclic rosarin subunits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.