Abstract

Xanthate-functional polymers represent an exciting opportunity to provide temperature-responsive materials with the ability to selectively attach to specific metals, while also modifying the lower critical solution temperature (LCST) behavior. To investigate this, random copolymers of poly(N-isopropylacrylamide) (PNIPAM) with xanthate incorporations ranging from 2 to 32% were prepared via free radical polymerization. Functionalization with 2% xanthate increased the LCST by 5 °C relative to the same polymer without xanthate. With increasing xanthate composition, the transition temperature increased and the transition range broadened until a critical composition of the hydrophilic xanthate groups (≥18%) where the transition disappeared completely. The adsorption of the polymers at room temperature onto chalcopyrite (CuFeS2) surfaces increased with xanthate composition, while adsorption onto quartz (SiO2) was negligible. These findings demonstrate the affinity of these functional smart polymers toward copper iron sulfide relative to quartz surfaces, presumably due to the interactions between xanthate and specific metal centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.