Abstract

Zinc is one of the essential trace elements, and plays an important role in human health. Severe zinc deficiency can negatively affect organs such as the epidermal, immune, central nervous, gastrointestinal, skeletal, and reproductive systems. In this study, we offered a novel biocompatible xanthan gum capped zinc oxide (ZnO) microstar as a potential dietary zinc supplementation for food fortification. Xanthan gum (XG) is a commercially important extracellular polysaccharide that is widely used in diverse fields such as the food, cosmetic, and pharmaceutical industries, due to its nontoxic and biocompatible properties. In this work, for the first time, we reported a green procedure for the synthesis of ZnO microstars using XG, as the stabilizing agent, without using any synthetic or toxic reagent. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were used to study the structure, morphology, and size of the synthesized ZnO structures. The results showed that the synthesized structures were both hexagonal phase and starlike, with an average particle size of 358 nm. The effect of different dosages of XG-capped ZnO nanoparticles (1–9 mM) against Gram-negative (Escherichia coli) and Gram-positive (Bacillus licheniformis, Bacillus subtilis, and Bacillus sphaericus) bacteria were also investigated. Based on the results, the fabricated XG-capped ZnO microstars showed a high level of biocompatibility with no antimicrobial effect against the tested microorganisms. The data suggested the potential of newly produced ZnO microstructures for a range of applications in dietary supplementation and food fortification.

Highlights

  • Zinc plays many essential roles in all life forms [1], and is part of the major subgroup of micronutrients that are beneficial in human nutrition and health [2]

  • The results showed that synthesized zinc oxide (ZnO) nanoparticles have high antibacterial activity

  • The zinc oxide nanoparticle is an inorganic compound widely used in various applications, and can be synthesized through different methods, such as mechanochemical, controlled precipitation, precipitation in the presence of surfactants, emulsion, microemulsion, sol-gel, microwave assisted, solvothermal, and hydrothermal processes [17]

Read more

Summary

Introduction

Zinc plays many essential roles in all life forms [1], and is part of the major subgroup of micronutrients that are beneficial in human nutrition and health [2]. The main sources of zinc are animal products [3], rice, wheat, and soybean [4]. There has been an insufficient dietary supply of the element, which has become the primary cause of zinc deficiency. Studies have revealed that the concentrations of zinc mineral elements in edible parts have decreased over the last 50 years [5], and that high levels of dietary inhibitors may suppress the absorption of. Zinc deficiency has an effect on organ systems such as the epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems [7]. The literature has determined that zinc deficiency can impair physical growth, and zinc-dependent metabolic functions [2]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.