Abstract
Zinc K-edge X-ray absorption near-edge structure (XANES) spectroscopy of Zn adsorbed to silica and Zn-bearing minerals, salts and solutions was conducted to explore how XANES spectra reflect coordination environment and disorder in the surface to which a metal ion is sorbed. Specifically, XANES spectra for five distinct Zn adsorption complexes (Znads) on quartz and amorphous silica [SiO2(am)] are presented from the Zn-water-silica surface system: outer-sphere octahedral Znads on quartz, inner-sphere octahedral Znads on quartz, inner-sphere tetrahedral Znads on quartz, inner-sphere octahedral Znads on SiO2(am) and inner-sphere tetrahedral Znads on SiO2(am). XANES spectral analysis of these complexes on quartz versus SiO2(am) reveals that normalized peak absorbance and K-edge energy position generally decrease with increasing surface disorder and decreasing Zn-O coordination. On quartz, the absorption-edge energy of Znads ranges from 9663.0 to 9664.1 eV for samples dominated by tetrahedrally versus octahedrally coordinated species, respectively. On SiO2(am), the absorption-edge energy of Znads ranges from 9662.3 to9663.4 eV for samples dominated by tetrahedrally versus octahedrally coordinated species, respectively. On both silica substrates, octahedral Znads presents a single K-edge peak feature, whereas tetrahedral Znads presents two absorbance features. The energy space between the two absorbance peak features of the XANES K-edge of tetrahedral Znads is 2.4 eV for Zn on quartz and 3.2 eV for Zn on SiO2(am). Linear combination fitting of samples with a mixture of Znads complex types demonstrates that the XANES spectra of octahedral and tetrahedral Znads on silica are distinct enough for quantitative identification. These results suggest caution when deciphering Zn speciation in natural samples via linear combination approaches using a single Znads standard to represent sorption on a particular mineral surface. Correlation between XANES spectral features and prior extended X-ray absorption fine structure (EXAFS) derived coordination environments for these Znads on silica samples provides insight into Zn speciation in natural systems with XANES compatible Zn concentrations too low for EXAFS analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.