Abstract

With increasing electronic medical data and the development of artificial intelligence, clinical decision support systems (CDSSs) assist clinicians in diagnosis and prescription. Traditional knowledge-based CDSSs follow an accumulated medical knowledgebase and a predefined rule system, which clarifies the decision-making process; however, maintenance cost issues exist in the medical data quality control and standardization processes. Non-knowledge-based CDSSs utilize vast amounts of data and algorithms to effectively make decisions; however, the deep learning black-box problem causes unreliable results. EXplainable Artificial Intelligence (XAI)-based CDSSs provide valid rationales and explainable results. These systems ensure trustworthiness and transparency by showing the recommendation and prediction result process using explainable techniques. However, existing systems have limitations, such as the scope of data utilization and the lack of explanatory power of AI models. This study proposes a new XAI-based CDSS framework to address these issues; introduces resources, datasets, and models that can be utilized; and provides a foundation model to support decision-making in various disease domains. Finally, we propose future directions for CDSS technology and highlight societal issues that need to be addressed to emphasize the potential of CDSSs in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.