Abstract

The comparative X-ray absorption spectroscopy study of gadolinium and samarium bisporphyrinate complexes represented by the formulas Gd(III)H(oep)(tpp), Gd(III)(oep)(2), Gd(III)H(tpp)(2) and Sm(III)H(oep)(tpp), Sm(III)(oep)(2), Sm(III)H(tpp)(2) is reported. The XAFS spectra are recorded on the LURE-DCI storage ring (Orsay, France) in transmission mode on the microcrystalline samples at the Gd and Sm L(3) edges. The local environment for Ln(3+) ions has been reconstructed applying one-shell and two-shell XAFS analysis procedures. The protonated and nonprotonated bisporphyrinate complexes present different XAFS features. After our analysis on the title derivatives, the gadolinium ion (at 80 K) is found to be bonded: (i) to eight nitrogen atoms at R(Gd-N) 2.50 A, for Gd(III)(oep)(2) [Debye-Waller (DW) factor 0.004 A(2)]; (ii) to seven nitrogen atoms at R(Gd-N) 2.49 A, for Gd(III)H(oep)(tpp) [DW factor 0.005 A(2)] and one nitrogen at long distance; and (iii) to six nitrogen atoms at R(Gd-N) 2.50 A [DW factor 0.006 A(2)] and two nitrogen atoms at long distance for Gd(III)H(tpp)(2). A similar coordination sphere has been detected for the corresponding Sm derivatives. So, the samarium ion (at room temperature) is bonded: (i) to eight nitrogen atoms at R(Sm-N) 2.53 A, for Sm(III)(oep)(2) [DW factor 0.006 A(2)]; (ii) to seven nitrogen atoms at R(Sm-N) 2.53 A, for Sm(III)H(oep)(tpp) [DW factor 0.006 A(2)] and one nitrogen at long distance; and (iii) to six nitrogen atoms at R(Sm-N) 2.50 A, for Sm(III)H(tpp)(2) [DW factor 0.006 A(2)] and two nitrogen atoms at long distance. As far as concerns Ln(III)(oep)(2) complexes, the increase of Ln-N distance in the series Gd(3+) < Eu(3+) < Sm(3+) reflects an increase in the ionic radii, which are in good agreement with previously published XRD data on Eu(III)(oep)(2). Moreover, the protonated Ln(III)H(oep)(tpp) and Ln(III)H(tpp)(2) complexes possess systematically shorter distances of about 0.02 A between the XAFS and XRD data. This difference is attributed to the asymmetry of the distribution concerning Ln-N distances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.