Abstract

In this work the potential application of synchrotron radiation in the studies of reaction kinetics in aqueous phase were presented. After short introduction describing principles of technique and potential application of XAFS for the structural studies of reacting species, the experimental results of kinetic measurements of reaction between gold(III) chloride complex ions and ethanol were presented. Analyzing the changes of absorption intensity in the XANES spectra registered at Au-L3 edge during the reaction, the change of the valence state of Au central atom (form 3+to 0) of reacting complex ion was determined. Moreover, empirical XANES data gave the chance to register the kinetic curve and to determine the rate constant of the studied reaction. It was found that reaction is relatively slow (second-order rate constant k = 3.66 · 10-5 M-1s) and lead to the gold metallic phase formation in the system. Applying the continuous-flow method, within the first 600 ms of reaction the changes in XANES spectra were registered. From the obtained results, supported with numerical calculations, two intermediate forms of adducts appearing prior the electron transfer were suggested. It was concluded that when the classic methods, e.g. UV-Vis spectrophotometry, cannot be applied to studies of kinetics of reactions in aqueous solution, the XAFS technique can be a valuable and substitutive (or supplementary) tool for such measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.