Abstract

Measurements and predictions of the X-33 turbulent aeroheating environment have been performed for Mach 6, perfect-gas air conditions. The purpose of this investigation was to compare turbulent aeroheating predictions from two Navier-Stokes codes, LAURA and GASP, with each other and with experimental data in which turbulent flow was produced through either natural transition or forced transition using roughness elements. The wind tunnel testing was conducted at free stream Reynolds numbers of 0.72 x 10(exp 7)/m to 2.4 x 10(exp 7)/m (2.2 x 10(exp 6)/ft to 7.3 x 10(exp 6)/ft) on 0.254 m (10.0-in.) X-33 models at alpha = 40 deg with smooth surfaces, smooth surfaces with discrete trips, and surfaces with simulated bowed thermal protection system panels. Turbulent flow was produced by the discrete trips and bowed panels for all but the lowest Reynolds number, while turbulent flow on the smooth model was produced only at the highest Reynolds number. Turbulent aeroheating levels on each of the three model types were measured using global phosphor thermography and agreed to within the experimental accuracy (+/= 15%) of the test technique. Computations were performed at the wind tunnel free stream conditions using both codes. Turbulent aeroheating levels predicted using the LAURA code were generally 5%-10% lower than those from GASP, although both sets of predictions fell within the experimental accuracy of the wind tunnel data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.