Abstract

The halogen bond is the attractive interaction between the electrophilic region of a halogen atom and the nucleophilic region of another molecular entity, emerging as a favorable manner to manipulate supramolecular chirality in self-assemblies. Engineering halogen bonded helical structures remains a challenge due to its sensitivity to solvent polarity and competitive forces like hydrogen bonds. Herein, we report a X⋅⋅⋅X (X=Cl, Br, I) type weak halogen bond that induces the formation and evolution of supramolecular helical structures both in solid and solution state. The π-conjugated phenylalanine derivatives with F, Cl, Br and I substitution self-assembled into 21 helical packing driven by hydrogen bond and halogen bond, respectively. The specific molecular geometries of π-conjugated amino acids gave rise to multiple noncovalent forces to stabilize the X⋅⋅⋅X halogen bond with small bond energies ranging from -0.69 to -1.49 kcal mol-1 . Halogen bond induced an opposite helicity compared to the fluorinated species, accompanied by the inversed circularly polarized luminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.