Abstract

Thin plates cut from melt-grown single crystals of iron +3.5% silicon were examined by an X-ray transmission topographic method and the spatial arrangement of individual dislocations and of dislocation arrays was investigated. The directions (including the sense in some cases) of dislocation Burgers vectors were identified. It was confirmed that Burgers vectors lie along <111>. Reactions such as ½[1̄11] + ½[111̄] = [010] were not observed among the individually resolved dislocations. The minimum separation of dislocations for easy individual resolution was 3μm with CoKαradiation and 5μm with AgKα. It was demonstrated that a one-to-one correspondence exists between dislocation outcrops and the etch pits produced by the dislocation-etching technique of Šesták (1959). The experiments showed that transmission X-ray topography when applied to metals of moderately heavy atomic weight can give a clear picture of the dislocation configuration in specimens sufficiently thick to be fully representative of the bulk material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.