Abstract

Electrospinning allows the production of fibrous networks for tissue engineering, drug delivery and wound healing in healthcare. It enables the production of constructs with large surface area and a fibrous morphology that closely resembles the extracellular matrix of many tissues. A fibrous structure not only promotes cell attachment and tissue formation, but could also lead to very interesting mechanical properties. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) is a biodegradable polyester that exhibits large (>400%) elongation before failure. In this study, synchrotron X-ray phase contrast imaging was performed during tensile deformation to failure on a non-woven fibre mat of P(3HB-co-4HB) fibres. Significant reorientation of the fibres in straining direction was observed, followed by localised necking and eventual failure. From an original average fibre diameter of 4.3 μm a bimodal distribution of fibre diameter (modal diameters of 1.9 and 3.7 μm) formed after tensile deformation. Extensive localised necking (thinning) of fibres between (thicker) fibre-fibre contacts was found to be the cause for non-uniform thinning of the fibres, a phenomenon that is expected, but has not been observed in 3D previously. The data presented here has implications not only in tissue regeneration but for fibrous materials in general.

Highlights

  • Electrospun constructs for the repair of load-bearing tissues are required to have adequate mechanical properties

  • We investigate the tensile deformation of a biodegradable polyester, P(3HB-co-4HB), that undergoes large elongation to failure using a bespoke tensile tester (P2R) and synchrotron X-ray tomography to shed light on structure–property relationships

  • Fiber mats with homogenous fiber morphology were obtained for P(3HB-co-4HB) solutions prepared with chloroform/acetone ratio of 100/0, 75/25, 65/35, and 50/50 (Figure 1B; Figure S2 in Supplementary Material)

Read more

Summary

Introduction

Electrospun constructs for the repair of load-bearing tissues are required to have adequate mechanical properties. Existing literature focuses on failure modes of individual fibers and/or on bulk mechanical properties of whole fiber mats In this manuscript, we investigate the tensile deformation of a biodegradable polyester, P(3HB-co-4HB), that undergoes large elongation to failure using a bespoke tensile tester (P2R) and synchrotron X-ray tomography to shed light on structure–property relationships. Biodegradable and biocompatible polymers are in use to pro­duce implant materials for tissue regeneration. Polyesters such as poly(l-lactic acid) (PLLA) and poly(l-glycolic acid) (PLGA) are used in several FDA-approved medical devices (Jamshidian et al, 2010; Makadia and Siegel, 2011). P(3HB-co-4HB) has considerable potential for use as a biodegradable material in implants requiring large elongation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call