Abstract

X-ray synchrotron emission tells us of the highest energy reached by accelerated electrons. In a few supernova remnants (SN 1006, G347.3-0.5) this is the dominant form of X-ray radiation, but in most it is superposed to the dominant thermal emission. Thanks to the spectro-imaging capability of Chandra and XMM-Newton, X-ray synchrotron emission has now been unambiguously detected in most young supernova remnants (Cas A, Tycho, Kepler). It arises in a very thin shell (a few arcsecs) at the blast wave. The thinness of that shell (much broader in the radio domain) implies that the high energy electrons cool down very fast behind the shock. The magnetic field that one deduces from that constraint is more than 100 μG behind the shock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call