Abstract

The IC 1396N cometary globule (CG) within the large nearby H II region IC 1396 has been observed with the ACIS detector on board the Chandra X-Ray Observatory. We detect 117 X-ray sources, of which ~50-60 are likely members of the young open cluster Trumpler 37 dispersed throughout the H II region, and 25 are associated with young stars formed within the globule. Infrared photometry (2MASS and Spitzer) shows that the X-ray population is very young: 3 older Class III stars, 16 classical T Tauri stars, and 6 protostars including a Class 0/I system. We infer a total T Tauri population of ~30 stars in the globule, including the undetected population, with a star formation efficiency of 1%-4%. An elongated source spatial distribution with an age gradient oriented toward the exciting star is discovered in the X-ray population of IC 1396N, supporting similar findings in other cometary globules. The geometric and age distribution is consistent with the radiation-driven implosion (RDI) model for triggered star formation in CGs by H II region shocks. The inferred velocity of the shock front propagating into the globule is ~0.6 km s-1. The large number of X-ray-luminous protostars in the globule suggests either an unusually high ratio of Class I/0 to Class II/III stars or a nonstandard initial mass function favoring higher mass stars by the triggering process. We find that the Chandra source associated with the luminous Class 0/I protostar IRAS 21391+5802 is one of the youngest stars ever detected in the X-ray band. We also establish for the first time that the X-ray absorption in protostars arises from the local infalling envelopes rather than from ambient molecular cloud material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.