Abstract

We report on high-resolution X-ray diffraction and time-resolved photoluminescence (TR-PL) studies of antimonide-based midinfrared (MIR) type-II laser samples. A structural characterization taking into account asymmetrical strain, layer tilting, and relaxation enables an accurate determination of the average lattice constant of the active region and the composition of the cladding layers. By designing the antimonide-to-arsenide interfaces, we achieve exact lattice matching of the active region to the substrate. Non-radiative recombination processes are investigated with time-resolved photoluminescence. The samples are also characterized under optically pumped laser operation. By an examination of the time-integrated and time-resolved amplified spontaneous emission (TR-ASE), we investigate the modal gain and gain dynamics. The variable stripe length method is combined with the TR-PL approach. Compared to the time-integrated gain spectra the spectral dependence of the maximum and minimum time-resolved gain shows a broad plateau. The full width half maximum (FWHM) of the TR-ASE pulse is 5.5±0.5 ps. Thus, short pulses in this range should be achievable upon laser operation. The active regions of the laser structures investigated here are promising subunits of type-II quantum cascade lasers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.