Abstract

We report the results of X-ray absorption spectroscopy studies on electrochemically deposited iridium oxide films. The emphasis of the study is the correlation of X-ray derived structural data with electrochemically controlled charge state. Data were acquired for films subject to redox cycling in neutral and alkaline aqueous media. In both cases, cyclic voltammetric responses show two redox couples, coulometrically of roughly equal magnitude. Assays of the iridium population (based on the iridium L(3) absorption edge amplitude) and the charge injected (based on integration of the voltammetric response) show that overall an average of ca. one electron per iridium atom is transferred. The absorption edge shifts indicate that the formal charge on the iridium changes, on average, from ca. 3.5+ to ca. 4.5+ across the entire process. EXAFS-derived changes in mean Ir-O distance and their mean square variation have been interpreted in terms of a two-site model, in which the two types of site have distinct redox potentials. Variations of local structure and disorder with potential are discussed and a generic model for structural disorder (parameterized via Debye-Waller factor) with diagnostic capability is developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.