Abstract

Hard carbon (HC) is a promising anode material for sodium-ion batteries, but the performance remains unsatisfactory and the sodiation mechanism in HC is one of the most debated topics. Here, from self-assembled cellulose nanocrystal sheets with crystallographic texture, unique HC nanosheets with vertically oriented (002) planes are fabricated and used as a model HC to investigate the sodiation mechanisms using synchrotron scanning transmission X-ray microscopy (STXM) coupled with analytical transmission electron microscopy (TEM). The model HC simplifies the 3D sodiation in a typical HC particle into a 2D sodiation, which facilitates the visualization of phase transformation at different states of charge. The results for the first time unveil that the sodiation in HC initiates heterogeneously, with multiple propagation fronts proceeding simultaneously, eventually merging into larger aggregates. The spatial correlation between the preferential adsorption and nucleation sites suggests that the heterogeneous nucleation is driven by the local Na-ion concentration, which is determined by defects or heteroatoms that have strong binding to Na ions. By identifying intercalation as the dominant sodium storage mechanism in the model HC, the findings highlight the importance of engineering the graphene layer orientation and the structural heterogeneity of edge sites to enhance the performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.