Abstract
One of the most important features in active galactic nuclei (AGN) is the variability of their emission. Variability has been discovered at X-ray, UV, and radio frequencies on time scales from hours to years. Among the AGN family and according to theoretical studies, Low-Ionization Nuclear Emission Line Region (LINER) nuclei would be variable objects on long time scales. Our purpose is to investigate spectral X-ray variability in LINERs and to understand the nature of these kinds of objects, as well as their accretion mechanism. Chandra and XMM-Newton public archives were used to compile X-ray spectra of seven LINER nuclei at different epochs with time scales of years. To search for variability we fit all the spectra from the same object with a set of models, in order to identify the parameters responsible for the variability pattern. We also analyzed the light curves in order to search for short time scale (from hours to days) variability. Whenever possible, UV variability was also studied. We found spectral variability in four objects, with variations mostly related to hard energies (2-10 keV). These variations are due to changes in the soft excess, and/or changes in the absorber, and/or intrinsic variations of the source. Another two galaxies seem not to vary. Short time scale variations during individual observations were not found. Our analysis confirms the previously reported anticorrelation between the X-ray spectral index and the Eddington ratio, and also the correlation between the X-ray to UV flux ratio and the Eddington ratio. These results support an Advection Dominated Accretion Flow (ADAF) as the accretion mechanism in LINERs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.