Abstract

ABSTRACT We present an X-ray spectral analysis of the high-mass binary 4U 1700-37 during its hard-soft state evolution. We use BeppoSAX, Suzaku, and Rossi X-ray Timing Explorer observations for this investigation. We argue that the X-ray broadband spectra during all of the spectral states can be adequately reproduced by a model consisting of a low-temperature blackbody component, two Comptonized components which are both due to the presence of a Compton cloud (CC) that up-scatters seed photons of T s1 ≲ 1.4 keV and T s2 < 1 keV, and an iron-line component. Using this model, we find that the photon power-law index is almost constant, Γ1 ∼ 2 for all spectral states. However, Γ2 shows behavior that is dependent on the spectral state. Namely, Γ2 is quasi-constant at the level of Γ2 ∼ 2 while the CC plasma temperature kT e ( 2 ) is less than 40 keV; on the other hand, Γ2 is in the range of 1.3 < Γ2 < 2 when kT e ( 2 ) is greater than 40 keV. We explain this quasi-stability of Γ during most of the hard-soft transitions of 4U 1700-37 in the framework of a model in which the resulting spectrum is described by two Comptonized components. We find that these Comptonized spectral components of the high-mass X-ray binaries 4U 1700-37 are similar to those previously found in neutron star (NS) sources. This index dependence versus both the mass accretion rate and kT e revealed in 4U 1700-37 is universal observational evidence for the presence of an NS in 4U 1700-37.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.