Abstract

Remotely and locally triggered release of therapeutic species by X-ray irradiation is highly desired to enhance the efficacy of radiotherapy. However, the development of such X-ray responsive nanosystems remains a challenge, especially in response to high energy clinically relevant X-ray radiation. Herein, we report novel nitroimidazole ligated gold nanoparticles (AuNPs) that synergistically function to release nitrite, an important precursor for nitric oxide and reactive nitrogen species that sensitize cancer cells, upon radiation with clinically used 6 MeV X-rays, while no release was detected without radiation. These functional AuNPs were prepared with surface-grafted nitroimidazole as the nitrite-releasing agent, cell-penetrating peptide (CPP) to induce nucleus localization, and poly(ethylene glycol) for water solubility. In vitro radiotherapy using such nanoparticles showed enhanced sensitivity of hypoxic cancer cells to X-ray radiation, presumably due to the generation of both reactive oxygen and nitrogen species. The dose modifying factor (DMF) was found to be 0.71 for the dual-functionalized nanoparticle, which indicates that significant lower X-ray doses are required to achieve the same therapeutic effects. Thus, X-ray triggered nitrite release from gold-nitroimidazole nanosystems offers a novel strategy to sensitize cancer cells for improved radiotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.