Abstract

We use X-ray imaging to study viscous resuspension. In a Taylor-Couette geometry, we shear an initially settled layer of spherical glass particles immersed in a Newtonian fluid and measure the local volume fraction profiles. In this configuration, the steady-state profiles are simply related to the normal viscosity defined in the framework of the suspension balance model. These experiments allow us to examine this fundamental quantity over a wide range of volume fractions, in particular, in the semidilute regime where experimental data are sorely lacking. Our measurements strongly suggest that the particle stress is quadratic with respect to the volume fraction in the dilute limit. Strikingly, they also reveal a nonlinear dependence on the Shields number, in contrast with previous theoretical and experimental results. This likely points to shear-thinning particle stresses and to a non-Coulomb or velocity-weakening friction between the particles, as also evidenced from shear reversal experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.