Abstract
When a triangular shock wave reflects from the free surface of a solid sample, microjetting may emit from the grooved surface, leading to high velocity approximately micrometer-size fragments. Microjetting is an important issue for material dynamic response under shock loading in both fundamental science and practical applications. In this paper, the dynamic process of microjetting is investigated in the laser-driven shock loading conditions, the experiments were performed at the ShenguangII-U (SGII-U) laser facility. Microjetting from the triangular grooves in the free surface of a tin sample is diagnosed with x-ray radiography, where the 40–200 keV high energy x-ray is created with the picosecond laser beam focused on a Au µ-wire target. The density distribution along the microjetting and cumulated mass can be inferred from the images radiographied by such ultrashot high energy x-ray. The density distribution shows two representative regions including the head region of microjetting with low density and high speed, and the root region with high density and low speed. The microjets from three continuous parallel grooves with 60° angle are significantly different from that of 120° angle, the effect of the groove angle was verified by numerical simulation and experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.