Abstract

We re-analyze all archival Chandra/ACIS observations of the Orion Nebula Cluster (ONC) to study the X-ray properties of a large sample of pre--main-sequence (PMS) stars with optically determined rotation periods. Our goal is to elucidate the origins of X-rays in PMS stars by seeking out connections between the X-rays and the mechanisms most likely driving their production--rotation and accretion. In our sample X-ray luminosity is significantly correlated with stellar rotation, in the sense of decreasing Lx/Lbol with more rapid rotation, suggesting that these stars are in the super-saturated regime of the rotation-activity relationship. However, we also find that stars with optical rotation periods are significantly biased to high Lx. This is not the result of magnitude bias in the optical rotation-period sample but rather to the diminishingly small amplitude of optical variations in stars with low Lx. Evidently, there exists in the ONC a population of stars whose rotation periods are unknown and that possess lower average X-ray luminosities than those of stars with known rotation periods. These stars may sample the linear regime of the rotation-activity relationship. Accretion also manifests itself in X-rays, though in a somewhat counterintuitive fashion: While stars with spectroscopic signatures of accretion show harder X-ray spectra than non-accretors, they show lower X-ray luminosities and no enhancement of X-ray variability. We interpret these findings in terms of a common origin for the X-ray emission observed from both accreting and non-accreting stars, with the X-rays from accreting stars simply being attenuated by magnetospheric accretion columns. This suggests that X-rays from PMS stars have their origins primarily in chromospheres, not accretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call