Abstract

At various stages of in situ thermal oxidation of Si(111) monocrystals, X-ray photoelectron spectroscopy (XPS or ESCA) reveals a shift in the silicon core-level binding energies which varies continuously from 2.4 to 4.2 eV. From the oxygen and silicon ESCA peak intensities, these films can be said to have the silicon dioxide composition with an excess in oxygen concentration. By correlating the silicon 2p or 2s binding-energy shifts with oxygen KLL Auger energy and oxygen 1s binding-energy shifts, it is shown that a Fermi level shift and differential extra-atomic relaxation energy in the interfacial region must be invoked, in addition to chemical structure considerations, to interpret these data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call