Abstract

In recent years, scientific Complementary Metal Oxide Semiconductor (sCMOS) devices have been increasingly applied in X-ray detection, thanks to their attributes such as high frame rate, low dark current, high radiation tolerance and low readout noise. We tested the basic performance of a backside-illuminated (BSI) sCMOS sensor, which has a small pixel size of 6.5 μm × 6.5 μm. At a temperature of -20°C, The readout noise is 1.6 e-, the dark current is 0.5 e-/pixel/s, and the energy resolution reaches 204.6 eV for single-pixel events. The effect of depletion depth on the sensor's performance was also examined, using three versions of the sensors with different deletion depths. We found that the sensor with a deeper depletion region can achieve a better energy resolution for events of all types of pixel splitting patterns, and has a higher efficiency in collecting photoelectrons produced by X-ray photons. We further study the effect of depletion depth on charge diffusion with a center-of-gravity (CG) model. Based on this work, a highly depleted sCMOS is recommended for applications of soft X-ray spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call