Abstract

Polycapillary x-ray optics provide an innovative new way to control x-ray beams. Placing these optics after the object to be imaged provides very efficient rejection of Compton scatter, while allowing image magnification without loss of resolution, image demagnification, or image shaping to match with digital detectors. Measured scatter rejection optics had primary transmissions greater than 50% and scatter transmission of less than 1%. For a 5-cm thick Lucite phantom, this resulted in a contrast enhancement of nearly a factor of two at 20 keV and three at 40 keV. The magnification from the tapered capillary optics improved the MTF at all frequencies out to 1.8 times the original system resolution. Increases below the system resolution are most important because clinically relevant structures generally occupy lower spatial frequencies. Alternatively, placing a collimating optic and diffracting crystal before the patient provides sufficient monochromatic beam intensity for medical imaging. Contrast, resolution, and intensity measurements were performed with both high and low angular acceptance crystals. At 8 keV, contrast enhancement was a factor of 5 relative to the polychromatic case, in good agreement with theoretical values. At 17.5 keV, monochromatic subject contrast was more than a factor of 2 times greater than the conventional polychromatic contrast. An additional factor of two increase in contrast, for a total factor of four, is expected from the removal of scatter in a large beam clinical system. The measured angular resolution after the crystal was 0.4 mrad for a silicon crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call