Abstract

We explore the X-ray properties of the 126 sub-mm galaxies (SMGs) of the LABOCA survey in the CDFS and the eCDFS regions. SMGs are believed to experience massive episodes of star-formation. Our goal is to examine whether star-formation coexists with AGN activity, determine the fraction of highly obscured AGN and finally to obtain an idea of the dominant power-mechanism in these sources. Using Spitzer and radio arc-second positions for the SMGs, we find 14 sources with significant X-ray detections. For most of these there are only photometric redshifts available, with their median redshift being ~2.3. Taking into account only the CDFS area which has the deepest X-ray observations, we estimate an X-ray AGN fraction of <26+/-9 % among SMGs. The X-ray spectral properties of the majority of the X-ray AGN which are associated with SMGs are consistent with high obscuration, 10^23 cm-2, but there is no unambiguous evidence for the presence of Compton-thick sources. Detailed Spectral Energy Distribution fittings show that the bulk of total IR luminosity originates in star-forming processes, although a torus component is usually present. Finally, stacking analysis of the X-ray undetected SMGs reveals a signal in the soft (0.5-2 keV) and marginally in the hard (2-5 keV) X-ray band. The hardness ratio of the stacked signal is relatively soft (-0.40+/-0.10) corresponding to a photon index of ~1.6. This argues against a high fraction of Compton-thick sources among the X-ray undetected SMGs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.