Abstract

Accretion disk thermal instability models have been successful in accounting for the basic observations of dwarf novae and the steady behavior of nova-like systems. Models for the dwarf-nova like variability of the old nova and intermediate polar GK Per give good agreement with the burst amplitude, profile and recurrence time in the optical and UV. A month-long “precursor plateau” in the UV is predicted for the expected 1992 outburst prior to the rise to maximum in the optical and UV. The models for the time scales of the outbursts and corresponding UV spectra at maximum are consistent with the inner edge of the accretion disk being essentially constant between quiescence and outburst and a factor of four larger than the corotation radius. These conclusions represent a challenge to the standard theory of magnetic accretion. Disk instability models have also given a good representation of the soft X-ray and optical outbursts of the X-ray novae A0620-00 and GS2000+25. Formation of coronae above the disk, heated by magneto-acoustic flux from the disk, may account for the temporal and spectral properties of the hard X-ray and gamma ray emission of related sources such as Cyg X-1, GS 2023+33 (V404 Cyg), 1E 1740.7-2942 (the “Galactic Center” Einstein Source), and GS 1124-683 (Nova Muscae).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.