Abstract

An understanding of crack propagation is critical for the development of rock mechanic models. To study the propagation of internal cracks in situ and determine their formation mechanism, a series of uniaxial compression tests on shale specimens were conducted using a novel setup that combines X-ray micro-computed tomography (X-ray micro-CT) with a uniaxial loading apparatus, which allows CT scans to be performed during compression. Macro- and micro-scale internal cracks were extracted from CT images collected after various stages of deformation through image thresholding segmentation, providing a record of the evolution of damage within the specimens, characterized by crack closure, generation, growth, and penetration. In addition, macroscopic cracks with two distinct orientations were observed and their formation mechanism was further determined. Furthermore, test results show that the distribution of pyrite grains influences the formation of cracks at the meso- and macro-scales. These results are significant for understanding crack propagation and the failure of shale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.