Abstract

When X-rays pass through a material, radiation damage occurs, and heat is generated at the X-ray interaction point, which can then be transferred around the X-ray irradiation site. This X-ray-induced heat transfer can affect the temperature of the sample and consequently the experimental environment in serial crystallography (SX) experiments. Here, we investigated radiation damage and measured the level of heating in the vicinity of the X-ray interaction point. In our experimental setup, when water, crystallization solution, and crystal suspension in a glass tube were exposed to X-rays, a temperature increase of approximately 1.0 °C occurred in the vicinity of the X-ray interaction point, with the heat generated by both the sample and the capillary. When Cu and Al/Zn plates were exposed to X-rays, the temperature around the X-ray exposure point increased by approximately 0.3 and 0.4 °C, respectively. The range of temperature rise decreased as the distance from the X-ray exposure point on the Al plate increased. The heat generated by the X-rays and the rise of the heat could be reduced by discontinuously transmitting the X-rays using the shutter. Our results provide useful information for obtaining more accurate experimental parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call