Abstract

We investigate a concept for making a large area, flat-panel detector for digital radiology. It employs an x-ray sensitive photoconductor to convert incident x-radiation to a charge image which is then electronically read out with a large area integrated circuit. The large area integrated circuit, also called an active matrix, consists of a two-dimensional array of thin film transistors (TFTs). The potential advantages of the flat-panel detector for digital radiography include: instantaneous digital radiographs without operator intervention; compact size approaching that of a screen-film cassette and thus compatibility with existing x-ray equipment; high quantum efficiency combined with high resolution. Its potential advantages over the x-ray image intensifier (XRII)/video systems for fluoroscopy include: compactness; geometric accuracy; high resolution, and absence of veiling glare. The feasibility of the detector for digital radiology was investigated using the properties of a particular photoconductor (amorphous selenium) and active matrix array (with cadmium selenide TFTs). The results showed that it can potentially satisfy the detector design requirements for radiography (e.g., chest radiography and mammography). For fluoroscopy, the images can be obtained in real-time but the detector is not quantum noise limited below the mean exposure rate typically used in fluoroscopy. Possible improvements in x-ray sensitivity and noise performance for the application in fluoroscopy are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call