Abstract
X-ray imaging of moving objects using line detectors remains the most popular method of object content and structure examination with a typical resolution limited to 0.4–1 mm. Higher resolutions are difficult to obtain as, for the detector in the form of a single pixel row, the narrower the detector is, the lower the image Signal to Noise Ratio (SNR). This is because, for smaller pixel sizes, fewer photons hit the pixel in each time unit for a given radiation intensity.To overcome the trade-off between the SNR and spatial resolution, a two-dimensional sensor, namely a pixel matrix can be used. Imaging of moving objects with a pixel matrix requires time-domain integration (TDI). Straightforward TDI implementation is based on the proper accumulation of images acquired during consecutive phases of an object’s movement. Unfortunately, this method is much more demanding regarding data transfer and processing. Data from the whole pixel matrix instead of a single pixel row must be transferred out of the chip and then processed.The alternative approach is on-chip TDI implementation. It takes advantage of photons acquired by multiple rows (a higher SNR), but generates similar data amount as a single pixel row and does not require data processing out of the chip. In this paper, on-chip TDI is described and verified by using a single photon counting two-dimensional (a matrix of 128 × 192 pixels) CdTe hybrid X-ray detector with the 100 µm × 100 µm pixel size with up to four energy thresholds per pixel. Spatial resolution verification is combined with the Material Discrimination X-ray (MDX) imaging method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.