Abstract

In early December 2019, the city of Wuhan, China, reported an outbreak of coronavirus disease (COVID-19), caused by a novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). On January 30, 2020, the World Health Organization (WHO) declared the outbreak a global pandemic crisis. In the face of the COVID-19 pandemic, the most important step has been the effective diagnosis and monitoring of infected patients. Identifying COVID-19 using Machine Learning (ML) technologies can help the health care unit through assistive diagnostic suggestions, which can reduce the health unit's burden to a certain extent. This paper investigates the possibilities of ML techniques in identifying/detecting COVID-19 patients including both conventional and exploring from chest X-ray images the effect of viral infection. This approach includes pre-processing, feature extraction, and classification. However, the features are extracted using the Histogram of Oriented (HOG) and Local Binary Pattern (LBP) feature descriptors. Furthermore, for the extracted features classification, six ML models of Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) is used. Experimental results show that the diagnostic accuracy of random forest classifier (RFC) on extracted HOG plusLBP features is as high as 94% followed by SVM at 93%. The sensitivity of the K-nearest neighbour model has reached an accuracy of 88%. Overall, the predicted approach has shown higher classification accuracy and effective diagnostic performance. It is a highly useful tool for clinical practitioners and radiologists to help them in diagnosing and tracking the cases of COVID-19.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.