Abstract

Carbon nanotube (CNT) field-emission x-ray source has great potential in x-ray communication (XCOM) because of its controllable emission and instantaneous response. A novel voltage loading mode was proposed in this work to achieve high-frequency pulse x-ray emission. The characteristics of cathode current and pulse x-ray versus voltage, frequency, and pulse amplitude were studied, and XCOM data transmission experiment was carried out. Results showed that the CNT cold cathode x-ray source, as a communication signal source, could work in 1.05 MHz pulse emission frequency. When the grid voltage was higher than 470 V, the pulse x-ray waveform amplitude achieved peak, and the shape exhibited a pseudo square wave. The duty cycle of the x-ray waveform exceeded 50%, reaching 56% when the pulse frequency reached 1 MHz. In the XCOM data transmission experiment, the pulsed x-ray waveform was well consistent with the loading data signal voltage waveform under different pulse-emission frequencies. This work realized the x-ray high-frequency pulse emission of CNT cold cathode x-ray source and lays a foundation for the development and application of CNT cold cathode x-ray source in XCOM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call