Abstract
The oxygen-evolving complex (OEC) catalyzes water-splitting through a reaction mechanism that cycles the OEC through the "S-state" intermediates. Understanding structure/function relationsships of the S-states is crucial for elucidating the water-oxidation mechanism. Serial femtosecond X-ray crystallography has been used to obtain radiation damage-free structures. However, it remains to be established whether "diffraction-before-destruction" is actually accomplished or if significant changes are produced by the high-intensity X-ray pulses during the femtosecond scattering measurement. Here, we use ab initio molecular dynamics simulations to estimate the extent of structural changes induced on the femtosecond time scale. We found that the radiation damage is dependent on the bonding and charge of each atom in the OEC, in a manner that may provide lessons for XFEL studies of other metalloproteins. The maximum displacement of Mn and oxygen centers is 0.25 and 0.39 Å, respectively, during the 50 fs pulse, which is significantly smaller than the uncertainty given the 1.9 Å resolution of the current PSII crystal structures. However, these structural changes might be detectable when comparing isomorphous Fourier differences of electron density maps of the different S-states. One conclusion is that pulses shorter than 15 fs should be used to avoid significant radiation damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.