Abstract

Iron redistribution in the intestine after total body irradiation is an established phenomenon. However, in the literature, there are no reports about the use of X-ray fluorescence microscopy or equivalent techniques to generate semi-quantitative 2D maps of iron in sectioned intestine samples from irradiated mice. In this work, we used X-ray fluorescence microscopy (XFM) to map the elemental content of iron as well as phosphorus, sulfur, calcium, copper and zinc in tissue sections of the small intestine from eight-week-old BALB/c male mice that developed gastrointestinal acute radiation syndrome (GI-ARS) in response to exposure to 8 Gray of gamma rays. Seven days after irradiation, we found that the majority of the iron is localized as hot spots in the intercellular regions of the area surrounding crypts and stretching between the outer perimeter of the intestine and the surface cell layer of villi. In addition, this study represents our current efforts to develop elemental cell classifiers that could be used for the automated generation of regions of interest for analyses of X-ray fluorescence maps. Once developed, such a tool will be instrumental for studies of effects of radiation and other toxicants on the elemental content in cells and tissues. While XFM studies cannot be conducted on living organisms, it is possible to envision future scenarios where XFM imaging of single cells sloughed from the human (or rodent) intestine could be used to follow up on the progression of GI-ARS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.