Abstract

The brain is a privileged organ with regards to its trace element composition and maintains a robust barrier system to sequester this specialized environment from the rest of the body and the vascular system. Stroke is caused by loss of adequate blood flow to a region of the brain. Without adequate blood flow ischemic changes begin almost immediately, triggering an ischemic cascade, characterized by ion dysregulation, loss of function, oxidative damage, cellular degradation, and break down of the barrier that helps maintain this environment. Ion dysregulation is a hallmark of stroke pathophysiology and we observe that most elements in the brain are dysregulated after stroke. X-ray fluorescence-based detection of physiological changes in the neurometallome after stroke reveals profound ion dysregulation within the lesion and surrounding tissue. Not only are most elements significantly dysregulated after stroke, but the level of dysregulation cannot be predicted from a cell-level description of dysregulation. X-ray fluorescence imaging reveals that the stroke lesion retains<25% of essential K+ after stroke, but this element is not concomitantly elevated elsewhere in the organ. Moreover, elements like Na+, Ca2+, and Cl- are vastly elevated above levels available in normal brain tissue (>400%, >200%, and>150%, respectively). We hypothesize that weakening of the blood-brain-barrier after stroke allows elements to freely diffuse down their concentration gradient so that the stroke lesion is in equilibrium with blood (and the compartments containing brain interstitial fluid and cerebrospinal fluid). The changes observed for the neurometallome likely has consequences for the potential to rescue infarcted tissue, but also presents specific targets for treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.