Abstract

An X-ray powder diffraction study was performed on vapor transport equilibration (VTE) treated Er:LiNbO3 crystals with different doping levels (0.2, 0.4 and 2.0% Er per cation site), different cut orientations (X- and Z-cuts) and different VTE durations (120, 150 and 180 h). Their diffraction characteristics were compared with those of pure congruent LiNbO3 and as-grown Er:LiNbO3. The most significant characteristic is the appearance of additional weak and broad peaks around the 2θ angles 30° and 59° in the diffraction patterns of both X- and Z-cut 2.0 mol% doped VTE crystals, confirming that they precipitated. A further comparison of their diffraction data with the powder diffraction files indicated that the new phase in these precipitated crystals is ErNbO4, which has an approximate concentration of 1.0%, 1.065%, 1.485% for 120, 150 and 180 h crystals, respectively. The crystalline grain sizes of the new phase are 132.2∼184.1A. The unit cell parameters of the as-grown and VTE crystals were also determined from diffraction data; the variation from pure LiNbO3 to as-grown Er:LiNbO3 was qualitatively explained according to the crystal structure of LiNbO3 and using the concept of ionic radius. VTE brings the crystal closer to a stoichiometric composition, thus causing the contraction of the lattice constants. Finally, a tentatively qualitative explanation for precipitate formation is given on the basis of crystal structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call