Abstract

A comprehensive study of phase composition, structural state, parameters of fine atomic structure, mechanical and tribological properties of molybdenum-carbon and tungsten-carbon-based coatings deposited by reactive magnetron sputtering in an acetylene-argon gas mixture has been carried out. It has been shown that the resulting coatings have a nanocomposite diamond-like carbon (DLC) structure based on the metal and the metal carbide phases with close sizes of coherently diffracting domains (CDD), approximately 3–7 nm, and on hydrogenated amorphous carbon. The coating nanohardness values were 13–15 and 20–23 GPa for the Mo-DLC and W-DLC coatings, respectively. The tribological tests have demonstrated that the Mo- and W-DLC coatings can reduce friction and effectively protect the steel surfaces hardened by them both under dry friction and under boundary lubrication conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.