Abstract

We have obtained light and X-ray diffraction patterns from trabecular and papillary muscles of various mammalian hearts in the living resting state and in rigor. Equatorial X-ray diffraction patterns from living muscles show the 1,0 and 1,1 reflections from a hexagonal lattice of filaments. The lattice spacing varies with sarcomere length over the observable range (2·0 to 2·5 μm) in such a manner that the lattice volume remains constant. In the living resting state the 1,0 reflection is stronger than the 1,1 reflection, whereas in rigor the 1,1 reflection is almost as strong as the 1,0 reflection. These intensity changes are similar to those found in vertebrate skeletal muscle, suggesting that the mechanism of cross-bridge attachment to actin is similar in both muscles. Two types of meridional X-ray diffraction pattern were observed in muscles in different conditions. One type, obtained from dead or glycerol-extracted muscles or from muscles treated with iodoacetate, showed a strong actin-related pattern but only a weak pattern associated with myosin. This type of pattern was similar to that from vertebrate skeletal muscle in rigor. The other type, obtained from living, resting muscle, showed a weaker actin pattern but a stronger myosin pattern. The myosin pattern included layer-line reflections associated with projections from the thick filaments. This second type of pattern was similar to that from resting vertebrate skeletal muscle, but the layer lines were weaker. The weakness of the myosin layer lines may indicate that part of the high resting tension found in heart muscle arises from a small amount of actin-myosin interaction in the resting state. Such interaction could provide a mechanism for varying the diastolic length of heart muscle and thereby the diastolic volume of the heart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.