Abstract
An electrochemical route has been employed to prepare undoped and Se-doped SnS thin films. Six samples including undoped and Se-doped SnS thin films were deposited on the fluorine-doped tin oxide glass substrate. An aqueous solution containing 2 mM SnCl2 and 16 mM Na2S2O3 was used in the electrolyte. Different Se-doped SnS samples were prepared by adding the various amounts of 4 mM SeO2 solution into the electrolyte. The applied potential (E), time of deposition process (t), pH, and bath temperature (T) were kept at − 1 V, 30 min, 2.1, and 60°C, respectively. After the completion of the deposition process, x-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to characterize the deposited thin films. XRD patterns clearly showed that the synthesized undoped and Se-doped SnS thin films were crystallized in the orthorhombic structure. Using Scherrer’s method, the crystallite size of deposited thin films is calculated. In addition, the crystallite size and lattice strain have been estimated using the modified form of the Williamson–Hall (W–H) method containing a uniform deformation model, a uniform deformation stress model, a uniform deformation energy density model, and by the size–strain plot method (SSP). The shape of SnS crystals was spherical in TEM images. The results showed that there was a good agreement in the particle size obtained from the W–H method and the SSP method with TEM images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.