Abstract

An intriguing topological problem posed by the double-helical Watson-Crick model of DNA is that of unwinding the intertwined strands during replication. Several workers have recently proposed novel side-by-side (SBS) structures for DNA. In all these models the two strands are joined by complementary Watson-Crick base pairs and the antiparallel polynucleotide strands alternate between short segments of right- and left-handed helix, thus both reducing the amount of intertwining and alleviating the unwinding problem. We show here that there are unacceptable discrepancies between the observed diffraction pattern of B-DNA and that calculated for the original SBS structure. We also describe a simple modification of this model which resolves some of the more serious discrepancies. However, the agreement is still markedly inferior to that obtained for a Watson-Crick model of DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.