Abstract
The X-ray diffraction (XRD) peak intensities of smectites in Chernozemic and related soils of Western Canada are generally low, in contrast to the high peak intensities of smectites in Podzolic soils of Eastern Canada and those of standard smectite samples. Consequently, X-ray quantitative analysis based on standard smectite samples may underestimate the amount of smectite and overestimate the amount of noncrystalline material in western Canadian soils. This study was undertaken to find the reasons for the weak XRD peak intensities of western soil smectites in terms of their purity and crystallinity. The Tiron dissolution method extracted only small amounts of noncrystalline material from the western soil clays and had little effect on XRD characteristics. The cation exchange capacity (CEC) hysteresis (or pH dependent CEC) between pH 3.5 and 11.0 of the western soil clays was also relatively small which confirmed the absence of significant amounts of noncrystalline material in these soil clays. Observed deviations of XRD positions from true basal spacings indicated that the western soil smectite particles were consistently thinner than the eastern soil smectite and Wyoming montmorillonite particles. Electron microscope observations supported these results. Because the diffraction intensity is proportional to the square of the particle thickness, the thinness of the western soil smectite particles appears to be a major factor in reducing their peak intensities. Thus, to obtain comparable peak intensity data from different soil smectites, particle thickness should be taken into account. Since it is often not practical to measure particle thickness, a procedure for quantifying smectite in soils that avoids this measurement is proposed. Key words: Peak intensity, crystallinity, particle size, particle thickness, Chernozemic smectite, Podzolic smectite
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.