Abstract

The role of particle shape on soil mechanical response has been studied extensively especially through numerical means. The underlying micro-mechanics of how particle shape may affect the soil mechanical responses at element scale remains unclear. Systematic micro-mechanical experiments that consider in-situ tracking of the evolution of fabric during the shearing process is missing. Aided by a miniaturised triaxial apparatus and X-ray computed tomography, this study presents a series of triaxial compression on four granular soils with different particle shapes yet the same mineralogy, grading and initial density. Evolution of three-dimensional soil fabric quantifiers during shearing was captured based on 192 full-field CT images. The results revealed that the initial shearing reduced the packing density without changing the particle packing pattern, followed by particle sliding and particle rotation which redistributed the force chains and formed a new packing pattern to resist shearing, causing strain localisation and reductions in both the contact number and concentration of contacts di-rection. Fabric anisotropy increased before reaching the peak and attained the maximum value as the soil approached the critical state. Particle shape, especially when quantified by overall regularity, or other combinations of descriptors, displayed more significant linear cor-relations with critical-state parameters than by local descriptor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call